Johan Öhman

910713 Curriculum Vitae

Website: johanohman.se Email: jhn.ohman@gmail.com LinkedIn: johan-öhman-7b324b40 ResearchGate: Johan-Oehman-2 GitHub: github.com/hyllevask

EDUCATION

Luleå University of Technology

Ph.D. in Experimental Mechanics

- Thesis: "Polarization Resolved Particle Holography"

Luleå University of Technology

Civilingenjörsexamen (Master) in Engineering Physics and Electrical Engineering

2010-2015

2015 - 2020

- Thesis: "3D Localisation and Orientation of Micron Sized Particles Using Digital Holographic Measurements"

EXPERIENCE

Predge AB

Analytics Developer November 2022-Current

Luleå University of Technology

Post-Doc in Experimental Mechanics November 2020-October 2022

Luleå University of Technology

Researcher in Experimental Mechanics

June 2020-October 2020

Luleå University of Technology

Ph.D Student 2015-2020

Varius Summer jobs

At Telia, Skanova, Stadium, Postnord and Neava.

SKILLS

- Analytics Skills: Robust parameter estimation, Kalman filters, Autoencoders, CNN, Particle filters, Regression, Bayesian Methods, ARIMA, Markov Chains
- Computer Skills : SQL, Python, PyTorch, Scikit, Numpy, MATLAB, UNIX, LATEX, GIT
- Experimental Measurement Techniques: Digital Holography (in-line and off-axis), IPI, PTV, Speckle Metrology, Ultrasonic Imaging, Laser Vibrometry, High Speed Imaging

LANGUAGES

Swedish: Mother tongueEnglish: Professional level

2009-2014

Professional Interests

- Inverse problems and machine learning methods
- Parameter estimation and forecasting
- Image and signal processing
- Optical metrology

PERSONAL INTERESTS

- Alpine and cross-country skiing
- Golf
- Computers and technology

Research Projects

I have been active in the following research projects:

New Replacement Policy Considering Environment ans Sustainability

Eureka clusters sustainability call 2022, SUS2022-039 NRPCES

2023-2026

$Inverkan \ av \ munskydd \ vid \ luftburna \ pandemier \ från \ ett \ strömningsmekaniskt \ perspektiv$

Vetenskapsrådet 2020-05871

2020-2021

FiDiMo - Standardized module for fish diagnostics

Energimyndigheten HåVa 50763-1

2020-2022

Flow of non-spherical particles: experimental arrangement

Vetenskapsrådet 621-2014-4906

2015-2020

TEACHING

• Teaching Assistant and Lecturer at Luleå University of Technology Physics 2 (F0005T)

2021-2022

• Teaching Assistant at Luleå University of Technology Optics and Photonics (F0048T) 2016-2022

 Teaching Assistant at Luleå University of Technology Modern experimental metrology (F7037T)

2016-2022

• Project Supervisor at Luleå University of Technology Project in physical measurement and sensor systems (S7014E) Autumn 2019 and 2021

OTHER EXPERIENCE

Ph.D representative in the faculty board

2016-2018

Work included strategic planing and evaluations of research and education.

Publications

- [1] H. Lindström, J. Öhman, V. Meulenberg, R. Gnauert, C. Weimann, and W. Birk, "Feasibility of condition monitoring of belt splices in belt conveyor systems using iot devices*", *PHM Society European Conference*, vol. 8, no. 1, p. 7, Jun. 2024, ISSN: 2325-016X.
- [2] V. Meulenberg, K. Moloukbashi Al-Kahwati, **J. Öhman**, W. Birk, and R. Nilsen, "Hazardous object detection in bulk material transport using video stream processing", in *International Congress and Workshop on Industrial AI and eMaintenance 2023*, U. Kumar, R. Karim, D. Galar, and R. Kour, Eds., Cham: Springer Nature Switzerland, 2024, pp. 531–543, ISBN: 978-3-031-39619-9.

- [3] **J. Öhman**, W. Birk, and J. Westerberg, "Wheel damage prediction using wayside detector data for a cross-border operating fleet with irregular detector passage patterns", in *International Congress and Workshop on Industrial AI and eMaintenance 2023*, U. Kumar, R. Karim, D. Galar, and R. Kour, Eds., Cham: Springer Nature Switzerland, 2024, pp. 491–501, ISBN: 978-3-031-39619-9.
- [4] **J. Öhman**, P. Gren, M. Sjödahl, and T. S. Lundström, "Experimental investigation of face mask filtration in the 15–150 m range for stationary flows", *Journal of Applied Physics*, vol. 131, no. 4, p. 044 702, 2022.
- [5] R. Brännvall, **J. Öhman**, G. Kovács, and M. Liwicki, "Cross-encoded meta embedding towards transfer learning", in 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2020.
- [6] M. Hedlund, C. Holmström, E. H. Deak, R. Olsson, M. Sjödahl, and J. Öhman, "Convolutional neural networks applied to inline particle holography", in *Imaging and Applied Optics Congress*, Optical Society of America, 2020, JW2A.15.
- [7] **J. Öhman** and M. Sjödahl, "Identification and size estimation of non-spherical nanoparticles using polarization-resolved holography", in *Imaging and Applied Optics Congress*, Optical Society of America, 2020, HTh4H.8.
- [8] **J. Öhman** and M. Sjödahl, "Identification, tracking, and sizing of nano-sized particles using dual-view polarization-resolved digital holography and t-matrix modeling", *Appl. Opt.*, vol. 59, no. 14, pp. 4548–4556, May 2020.
- [9] J. Öhman, P. Gren, and M. Sjödahl, "Polarization resolved dual-view holographic system for investigation of microparticles", in *Digital Holography and Three-Dimensional Imaging 2019*, Optical Society of America, 2019, Th2A.5.
- [10] **J. Öhman**, P. Gren, and M. Sjödahl, "Polarization-resolved dual-view holographic system for 3d inspection of scattering particles", *Appl. Opt.*, vol. 58, no. 34, G31–G40, Dec. 2019.
- [11] **J. Öhman** and M. Sjödahl, "Improved particle position accuracy from off-axis holograms using a chebyshev model", *Appl. Opt.*, vol. 57, no. 1, A157–A163, Jan. 2018.
- [12] **J. Öhman** and M. Sjödahl, "Axial particle positioning by wavefront parameterization using chebyshev polynomials and off-axis digital holography", in *Digital Holography and Three-Dimensional Imaging*, Optical Society of America, 2017, M4A.3.
- [13] **J. Öhman** and M. Sjödahl, "Off-axis digital holographic particle positioning based on polarization-sensitive wavefront curvature estimation", *Appl. Opt.*, vol. 55, no. 27, pp. 7503–7510, Sep. 2016.
- [14] B. Jiang, J. Carlson, M. Arranz, P. Lindblad, and **J. Öhman**, "Ultrasonic imaging through thin reverberating materials", in *Physics Procedia*, vol. 70, 2015.